On Systematic Scan
نویسندگان
چکیده
In this thesis we study the mixing time of systematic scan Markov chains on finite spin systems. A systematic scan Markov chain is a Markov chain which updates the sites in a deterministic order and this type of Markov chain is often seen as intuitively appealing in terms of implementation to scientists conducting experimental work. Until recently systematic scan Markov chains have largely resisted analysis and a gap in the parameters that imply rapid mixing has developed between systematic scan Markov chains and the more frequently studied random update Markov chains. We reduce this gap in this thesis by improving the parameters for which systematic scan mixes when applied to several well-known spin systems. The main contribution of this thesis is the introduction of a new technique for proving rapid mixing of systematic scan Markov chains. It is known that, in a single-site setting, the mixing time of systematic scan can be bounded in terms of the influence that sites have on each other. We generalise this technique for bounding the mixing time of systematic scan to block dynamics, a setting in which a (constant size) set of sites are updated simultaneously. In particular we introduce a parameter corresponding to the maximum influence on any site and show that if this parameter is sufficiently small, then the corresponding systematic scan Markov chain mixes rapidly. We present several applications of this new proof technique. In particular we show that systematic scan mixes rapidly on spin systems corresponding to proper q-colourings of (1) general graphs, (2) trees, and (3) the grid for improved parameters than were previously known. We also obtain rapid mixing of systematic scan Markov chains for sampling H-colourings of the n-vertex path for a restricted family of H using this technique. The H-colouring result is extended to general graphs H by placing more restrictions on the scan and using path coupling, a well-established technique for bounding mixing times of Markov chains. Path coupling is also used to prove rapid mixing of a single-site systematic scan for sampling proper q-colourings of bipartite graphs.
منابع مشابه
Brain Single Photon Emission Computed Tomography Scan (SPECT) and Functional MRI in Systemic Lupus Erythematosus Patients with Cognitive Dysfunction: A Systematic Review
Objective(s): Systemic lupus erythematosus (SLE) is an autoimmune disease with a wide range of clinical manifestations. Cognitive dysfunction is one of the manifestations that could present prior to the emergence of any other neuropsychiatric involvements in SLE. Cognitive dysfunction is a subtle condition occurring with ahigh frequency. However, there is no data on the correlation of cognitive...
متن کاملA Systematic Scan for 7-colourings of the Grid
We study the mixing time of a systematic scan Markov chain for sampling from the uniform distribution on proper 7-colourings of a finite rectangular sub-grid of the infinite square lattice, the grid. A systematic scan Markov chain cycles through finite-size subsets of vertices in a deterministic order and updates the colours assigned to the vertices of each subset. The systematic scan Markov ch...
متن کاملDobrushin Conditions and Systematic Scan
We consider Glauber dynamics on finite spin systems. The mixing time of Glauber dynamics can be bounded in terms of the influences of sites on each other. We consider three parameters bounding these influences — α, the total influence on a site, as studied by Dobrushin; α′, the total influence of a site, as studied by Dobrushin and Shlosman; and α′′, the total influence of a site in any given c...
متن کاملScan Order in Gibbs Sampling: Models in Which it Matters and Bounds on How Much
Gibbs sampling is a Markov Chain Monte Carlo sampling technique that iteratively samples variables from their conditional distributions. There are two common scan orders for the variables: random scan and systematic scan. Due to the benefits of locality in hardware, systematic scan is commonly used, even though most statistical guarantees are only for random scan. While it has been conjectured ...
متن کاملScan Test Cost and Power Reduction Through Systematic Scan Reconfiguration
This paper presents segmented addressable scan (SAS), a test architecture that addresses test data volume, test application time, test power consumption, and tester channel requirements using a hardware overhead of a few gates per scan chain. Using SAS, this paper also presents systematic scan reconfiguration, a test data compression algorithm that is applied to achieve 10× to 40× compression r...
متن کامل